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Abstract— In the InfoBeacons system, a peer-to-peer network to guide user keyword queries to information sources, wkiege
of beacons cooperates to route queries to the best information actual processing of queries is done, and then retrievdtsesu
sources. Many internet sources are unwilling to provide moe  ang return them to the user. As such, the InfoBeacons network
cooperation than simple searching to aid in the query routirg. We is similar to a super-peer network [37], except that the beac

adapt techniques from information retrieval to deal with this lack . .
of cooperation. In particular, beacons determine how to rote do not expect the same level of cooperation from sources (i.e

queries based on information cached from sources’ response €xporting their indexes or schemas) that super-peers exjpec

to queries. In this paper, we examine alternative architeaires order to choose appropriate beacons and sources for a gieey, g
for routing queries between beacons and to data sources. Wewe adapt techniques from networked information retrievial],[
also examine how to improve the routing by probing sources [15]. These techniques allow us to predict how good a source
in an informed way to learn about their content. Results of or beacon will be for a given query. As a result, we can route

experiments using a beacon network to search 2,500 informiain . .
sources demonstrates the effectiveness of our system; fotaanple, queries through the system to the most appropriate souaces,

our techniques require contacting up to 71 percent fewer sages avoid overburdening beacons and sources with irrelevagrieg

than existing peer-to-peer random walk techniques. In this paper, we describe how the InfoBeacons system uses IR
techniques to perform query routing. Beacons maintain aeac
of the information available at other beacons and sources an
use this cache to determine where to route queries. Eacloieac
is responsible for a subset of sources (to reduce the load on
s e any individual beacon), and many beacons cooperate to route
process; C.2.4 [Computer-Communication Networks] Costeéd ,\erjes among a very large number of sources. We examine thre

systems — Distributed databases, distributed application approaches to inter-beacon routing. In therarchical approach,
Addltl(_)nal Keywords: peer-to-peer systems, information search “superbeacon” uses IR-style ranking to choose among heaco
and discovery In the flat approach, beacons treat each other as regular sources,
forming a flat network composed of both beacons and sources. A
I. INTRODUCTION beacon routes queries to the most promising “neighbor,’ciwhi
[pay be a source or another beacon. The third approachyibrid

Categories and Subject DescriptorsH.3.4 [Information Storage
and Retrieval] Systems and Software — distributed systéms,
formation networks, performance evaluation; H.3.3 [Infation
Storage and Retrieval] Information Search and Retrievaarch

There is an explosion of useful data available from dynam h that bi the hi hical and flat archi@stib
information sources, such as “deep web” data sources, roach that combines the hierarchical and flat archrtes{oy

services, web logs and personal web servers [5]. The Irtterfe"2N9iNg beacons in two levels with multiple superbeacurt

and web standards make it possible and easy to contact aesomglt'ple leaf” beacons clustered under each superbeaBon.

and retrieve information. But the proliferation of soureageates perbeacons route queries to leaf beacons and other supersea

a challenge: how to find the right source of information onVh'le leaf beacons route queries to sources.

a given query? Peer-to-peer search mechanisms are useful fc)When a source returns results for a query, the beacon caches

finding information in large scale distributed systems, suth :jhose treis_ultf_, to.alc:hm futLtJre routing (ilﬁclsmnsh ';OWGVBE t
mechanisms often rely on the explicit cooperation of infation ecentralization In the system means that each beacon sees a

sources to export data, data summaries or data schemas to“gmild nkl/lmber of quer!es,lanl;j thus the csche mallly nhot Wa;ﬁn\'/ter
in searching. Many data sources are unwilling to provide thfi!ICKly. MoTeoVer, a simple beacon cache usually has aemn

cooperation, either because they do not want to export bhiua;”ew oflthetfultlhrange O_f con}fet:[ ak\)/allablt? at ahsourc(ejz. Ineorc:j i
information, or because they do not want to modify their Berv 0 accelerate the warming ot the beacons cache and expsand |

software and expend the resources necessary to coopethta wicoverage of a source's data, we upery probing proactively

peer-to-peer system guerying a source with keywords to sample the source’s d&fa [

How can we build a peer-to-peer system that is useful %}9]- Generating good probe queries is central to the pexince

searching large numbers of distributed sources when tlmsees Of query probing. We present a technique caliddrmed probing

will not provide more cooperation than simple searching? Oﬁhat utilizes the information available on a source’s cebid

approach is to build a network of peers, callefbBeaconsthat web interface to generate effective probe queries. Impgihe

are loosely-coupled to the information sources: beaconsexi qu\jt\;gyho;‘ ?eecaZ?;;ist;:lts "; ;Tgt%\;edoqﬁ;%r:?tmi ith real
to sources and utilize their existing search interface, dmunot Ve exper y eval u lques wi

expect tight schema integration, data summary export, gr aWternet data using a prototype implementation of the lefa&ns

other high-level cooperation from the source. InfoBeacans system. Experiments demonstra’Fe_ that our techniques rperfo
better than random walks, an efficient and scalable pepeéo-

Brian Cooper is now at Yahoo! Research. Current email: ad@gahoo- outing mechanism [26], [1]. We also evaluated our queryoprp
inc.com. Sangeetha Seshadri's email is sangeeta@chgatac technique using the prototype implementation of our syswfith



Beacon

as little as a single query, informed probing is able to ettes User query interfach
many documents as a large number of random dictionary-word-
based queries [10]. Routing
.. . . . . B Cache
There are many existing techniques for performing inforomat Logic
discovery in peer-to-peer systems. However, these teglsiq
must be adapted, and new techniques must be developed,|to dea S#urce wrap\pers

with dynamic, uncooperative information sources. Firsgngn

systems rely on the explicit cooperation of the data sources

to export content or content summaries [37], [30], [29],][33

Unfortunately, deep web sources are often unwilling to dp so

and our system must use special approaches to learn about a

source’s data. Second, some systems gather informatioat abo Ej Ej Ej Ej
sources in order to build a static, federated search syskdin [
Many data sources are dynamic, frequently changing theitecd

or appearing and disappearing, and we must dynamicallytadaP .

our routing based on the most current information. Thirdpyna Flg. 1. Beacon architecture.
systems focus on locating documents based on their iderj8fi¢

or on keywords in document metadata (such as the title) [2a. . the routing logic uses the information in the cache to determine

work focuses on full text content-based searching and mguiti where to route queries. Lightweightource wrapperssubmit
Whé(.:h preszn'ts gew_ per\f/o rmance challenges. More related W‘?queries to data sources and retrieve results. Our curretdtppe
Is discussed in Section V. _ . . . includes simple wrappers for submitting queries via HTMtnfis

In this paper, we examine h_owmformatlon retrieval teche) and screen-scraping the results. Techniques for creatioge m
can be adapted to route queries through the InfoBeacoansystcomplex wrappers, and creating wrappers automaticallye ha

Specifically, we make the following contributions: been examined by others [34], [11], [2] and can be integrated

e We present and compare theerarchical flat and hybrid into our framework.
architectures for routing queries between beacons. Beacons can be run by libraries, universities, ISPs, catjmors

e We describe an effective query probing technigiméormed Or any organization that wants to provide searching sesvioe
probing that uses a minimal number @fformed probego its user group. In order to reduce the resource requirenfents
extract content from data sources and accelerate warngingthese hosts (and to encourage them to participate), bearens
of beacon caches. designed to be lightweight components. In particular, aal gs

e We present an experimental evaluation, which demonstra%é’sm'r"m_'ze thebmemory,VSFOC%SdSIng ar;]q band\l/wdth 're|?wrﬁme X
the performance tradeoff between different routing aechit 1oF running a beacon. We address this goal partially throug

tures. The results also show that our techniques can signffiPlementation techniques (for example, by designing tie i
cantly outperform previously reported approaches. memory data structures to be very compact) and partialtyutyin
i . . . algorithms for efficiently routing queries (so that only léeant”
This paper is organized as follows. First,

_ in Section Il Wgea00ns should have to process a given query, reducing dde lo
describe how beacons cache source data, and use those cagheSner beacons). In this paper we focus on developing such
to route queries. Then, in Section Ill we describe and compaLticient routing algorithms. Because we expect beacons tiby
_quahtanyely the hierarchical, flat a_nd hybrid architeetu N_ext_, by libraries, ISPs and so on, and not necessarily by end users
in Section IV we present experimental results quantitgtivee,ons will typically be long-lived peers, even if the imfation
evaluating our techniques. We examine related work in 888fi ¢ 1ces they manage are not. Thus, while the system is remust
and discuss our conclusions in Section V1. beacons joining and leaving, we expect such turnover amoag t
beacons to be infrequent.
Il. ROUTING QUERIES USING CACHED RESULTS Each beacon is responsible for a small number of sources (say

In the InfoBeacons systerhgaconsonnected in a peer-to-peer100 or so). Since it is too expensive to send every query toyeve
network work together to guide user queries to useful inBarmsource, the beacon must determine the most appropriateesour
tion sources. Beacons accept user keyword queries, cotmecfor each query. Ideally, each source would export a sumnfaitg o
sources, submit the queries, retrieve results, and rehem tto content to help the beacon route queries. However, manynkite
the user. The user is therefore shielded from the complefity information sources are willing to accept queries and reter
choosing and searching many different sources. Many bsacosults, but are unwilling to provide more cooperation by eXpg
each managing multiple information sources, are neededdie s their contents, content summaries, or schema informafibis is
to a large number of information sources. what we mean by “uncooperative sources.” As a result, a lmeaco

Figure 1 shows the architecture of an individual beacon. Timust learn which sources are good for each query, whilenglyi
user query interfac@rovides an API for users to submit querieonly on the sources’ basic search interface. Beacons |dzuat a
and retrieve results. Currently, our prototype acceptsigsieas sources by caching results from previous queries, and tsen u
HTTP GET requests and returns results encoded in XML. Ustitese results to choose appropriate sources for futureéegué¥e
queries in our system are sets of multiple terms, although agay that the beacon Isosely coupledo the information sources.
technigues can be extended to deal with other query typeh és1 This loose coupling ensures that it is cheap to integrateva ne
general boolean queries). Tlachecontains partial information source, so that the system is tolerant to frequently appgamd
about the content available at sources and other beacods, disappearing sources.

Information sources



|| exothermic | oxygen | reactions| product | consumer|| tgs
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The numbers in this table represent tf# counts for each

word and source. Now imagine that a user submits a query

for “exothermic reactions” taB. The ProbResults score fog

% (70/100) x (120/100) = 0.84, while the score forssy is

0/150) x (80/150) = 0.036. Thus, the beacomB would first

'contacts; to search for “exothermic reactions.” This makes sense,

Tseijr:atlllo n(?Snt?;)I(i)zV:d %v?qﬁlc:eniorl\’ oiﬁlsglgfe;etgfﬁfs I;esystel mS &ffce sites; contains chemistry literature, and the beacon cache
y ’ y ’ ay reflects that more previous results from contain “exothermic”

;dtﬁzegtggzrgd_rvﬁ?é nggﬁgy 2e:feor2:’uizgalllncg]u%l;hj Sﬁiglénd “reactions” than those fromy. On the other hand, if the user
y : ' 9 sy y p searches for “consumer reactions,” we would expgdb receive

charact(_arlzatlon of_ the source contents, while a beacqstamhy a higher ProbResults score, and it does, scoring 0.75 ( pa
adapts its cache in response to new results. Experiments sq8 0.48 fors,)

that co_ntlnual adaptation Improves source selection peeoce The ProbResults function is adapted from the Ind metric irsed
(especially when content is changing frequently) [13]. the bGIOSS information retrieval system [17]. ProbRedtliffers
from Ind in several key ways in order to work in a loosely-

A. ProbResults routing coupled, dynamic peer-to-peer architecture. First, PesbiRs

We have developed a function, callecdbbResultsto determine tries to characterize both the behavior and the content otiecs,
where to route queries based on the information in the bémcowhile Ind focuses only on the content. For example, Bjevalue
cache. ProbResults uses the cache to predict the numbesuttisre used by ProbResults counts documents once per time they are
that a source will return containing the given query wordis t returned as a query result, not just once overall (as in Ifids,
predicted number is called tiobResults scoréThe ProbResults ProbResults gives higher weight to documents that arermedur
function uses several values: multiple times, better characterizing the behavior of tbearse
in response to queries. Characterizing a source’s behaeips
N . compensate for the inexact picture a loosely-coupled behes
e Rj: the number of past results from soureehat contained o the source’s content. Another difference is that both fthe

query words and R? values are constantly updated in the beacon cache, unlike
e 1gs: the total number of times that soureéhas been queried in GIOSS, where a static source summary is constructed. As a

A beacon is like anetworked information retrieval systesnch =
as GIOSS [17] or CORI [15], but adapted to work in a peer-g,
to-peer manner with uncooperative sources. First, thedme&
loosely coupled to the information source, allowing it torlwvo
with even uncooperative sources, while many existing nekeg
IR systems require sources to export their contents or obnt
summaries. The high turnover of data sources observed ity m
peer-to-peer systems also makes loose coupling imporéent

e ng: the number of terms in the query

by the beacon result, ProbResults produces scores that are tuned to thentu
The ProbResults score for sitefor a query@ is calculated by: behavior of the source, unlike Ind, whose scores can bectatee s
no over time.
s .
ProbResultsScofe = | | 2 a . Although a source may return documents that contain a par-
e} tgs ticular word, actual queries containing the word may preduc
i=

. no results at that source. This may either be due to frequent
EachR;/tqs term represents the expected number of results (fegnient change at the data source or the fact that the word is
ar;y query) froms that contain query word. Multiplying the nqt considered a useful query term by the source. For example
R} /tqs values produces an aggregate score for all of the queg¥hough most documents at a weather related source magicont
words. _ _ the term “weather”, the source may produce no results when

In order to keep the beacon lightweight, the beacon cache d@gnply queried for “weather’, as the term is very common and
not contain whole documents, but instead only retainss$ie&i pence carries no weight. We have developed a techniquedcalle
about the word d|str|but|or_13 in th(_e results _returned fromheaexperience weightinghat allows the cache to dynamically adapt
source. In fact,sthe only information that is needed for eagfhq align itself with the actual behavior of the informatimurce.
sources is the R; value for each word and thgs value for the Experience weighting uses an “experience facl®F > 1. After
source. The_result is that the beacon _cache is very compattt, @,ch query, the beacon multiplies the cache count for query
in our experiments a beacon responsible for 100 sourcesedeeghyms for that source bF, if the source returns results for the
only a few tens of megabytes of cache. This cachln_g strucsure, uery; otherwise, the cache count is divided B. Thus, over
adapted from the source summary structure used in the_GIO e, experience weighting adjusts the term counts in thea
system [17]. Moreover, since the beacon only updates this te, reflect not just the summary of data available at the source
count data structure for retrieved documents, and does @ hp,; giso the actuabehaviorof the source. Moreover, experience
to build a full inverted index, query results can be procéssBY yejghting allows the beacon to deal with dynamic informatio
quickly (in fact, more quickly than they can be downloadealtir 5t sources. If a source changes its content, invalidatirg th
the data sourcy. cached information and causing the beacon to make bad goutin

Consider two sources; ands; that are managed by the sameyecisions, the cached values will quickly be experienceghteid
beaconB. Sources; contains chemistry papers, whilg contains - gownward to adjust the routing. In practice, experienceghing
retail customer survey responses. After several querigsyeon s more effective at adapting the beacon cache to reflecttierd
of the beacon cache might contain: contents and behavior of sources than other alternatives (as

) a forgetting factoj [13].

1For example, the time to download 3,394 web pages from wwavady . .
to Georgia Tech was 173 seconds, while the time to parse asiedhose 1 he effectiveness of the ProbResults function depends en th
documents on a 2.8 GHz Xeon machine was 12 seconds. quality of the cached information. If the cache is biasedamv



a particular topic or popular documents, queries may not lache may be biased towards the results of popular querges an
routed to sources with relevant content. To deal with thabfam, may not have any information matching less popular quefiks.
we employ several techniques. First, we use a techniquedcalbeacons can proactively construct initial data source sames
informed probing(described in the next section), to add a varietpy sending a small number of probe queries to the data sources
of content to the beacon cache, not just the most populaenbnt This probing can accelerate the cache warm-up process,edpd h
Second, if the cache contains no information about a giveamyqu to ensure wider coverage of a source’s content. Since bsacon
term, we do not assume that the source has no content relevaanidle uncooperative data sources, some of which may impose
to the query term. Instead, we use a special constBpt,,, limitations on the number of requests serviced, it is imgatrtto
instead ofR; /tqs, whenR; (or tgs) is zero. In practice, a small use as few probe queries as possible. Hence, the challemge he
value of P,,;,, such as 0.0001, works well. The,,;,, constant is to retrievemaximuminformation from a source while using a
also allows us to calculate a non-zero ProbResults score@ fominimumnumber of probe queries.
source if we have cached information from the source aboutQuery probing has been proposed by other investigators as
some, but not all, of the query terms. Since Equation (1) iseaway to deal with uncooperative sources [10], [19]. Typical
product, withoutP,,;, the ProbResults score would be zero itjuery probes may be terms randomly chosen from a dictionary,
there were any query terms that matched no cached documemtserms from a rule-based classifier for determining thectop
for a given source. Third, when ejecting entries from theheac of a source. However, in each case a considerable number of
we preferentially eject entries that have little inforneativalue; queries may have to be issued to the source before any results
that is, entries whose cache count are clos€4@,. This retains are retrieved. For example, during our experiments, wergbde
high quality cached information even if queries tend to kifes that on average only one percent of random query probesestur
cache. Fourth, even if a query is for rare or less popularertint any results from sources. The problem is that the query probe
the beacon network will continue searching until resulteeit@een has noa priori information about the source, and must try many
found. Such queries will be more costly than queries for papu probes before finding one that is relevant to the source’'secdn
content, but they will still find information if it exists inasirces  Qur approach is to use probes that are tailored to each source
managed by beacons. Finally, note that a highly skewed watkl to improve the chance that each probe retrieves information
(i.e. where queries follow a Zipfian distribution) may bid®t Our probing strategy, callethformed probing exploits the fact
cache toward the frequent queries, but that this in factlt®suthat the information available on a data source’s crawlase-
in good performance for frequent queries, causing an dverlterface (e.g., HTML form) is representative of the comitan
improvement in beacon performance compared to a non-skewRé data source, even if the content itself is not crawlabte.
query workload. example, a deep web data source containing medicine-delate
We could also add randomization to the ProbResults functianformation is likely to have keywords relevant to mediciime
to improve the chance that a source which appears irrelevaé metadata tagg{ITLE), (META), etc.) and page text of the
due to cache bias is still contacted by the beacon. Of courggawlable web interface. We therefore construct probe igsier
more randomization means that more truly irrelevant sauece from these keywords. The probability that probes using ehes
contacted by the beacons, reducing the efficiency of theesyst terms will return results is much higher than that of probasell
Similarly, we could add personalization weights to ProhRss on randomly chosen dictionary words.
to assist in answering queries that were for a specific toga a  To construct probes, we take terms preferentially f@@TLE)
not necessarily well represented by the beacon cache. We haMd (META) tags to construct a query withterms. For example,
not implemented such randomization or personalizatioh,W®l e might construct probes with = 10 terms. If there are less
note that the beacon framework is extensible enough to stipp@anr terms in the(TITLE) and (META) tags, we must select
such techniques. some terms from the text of the page. We can use a weighting
Experimental results in [13] show that our optimized Promechanism (such as TF/IDF, where IDF is computed over a
bResults function produces better predictions for ouriappbn corpus of web pages) to rank the terms in the text and choese th
scenario than the Ind ranking or other ranking functionsduse highest weighted terms for inclusion in the probe.
the GIOSS and CORI systems. For example, in a system whergyperiments in Section IV evaluate both the standaloneoperf
uncooperative source contents are frequently changintams mance of the query probing technique and its impact on dveral
using ProbResults contact about half the sources comparedsystem performance. Our results show that informed probes a
beacons using the other ranking functions in order to find t%ry effective at extracting source data. Our approachdcoel
same quality of results. There may be other ranking funstioytended by augmenting informed probes with synonyms to fur
that result in better predictions for different scenaridewever, ther increase the probability of finding matching contelihagh

we have found in practice that ProbResults works very well fgnis extension is not implemented in our current prototype.
our loosely-coupled network of highly dynamic data sources

B. Warming beacon caches wiiiformed query probing I1l. ROUTING QUERIES BETWEEN BEACONS

In the InfoBeacons system, query routing is based on sourceDifferent sources contain widely varying information, aad
summaries constructed incrementally by caching resuleadfer single beacon may not have the right sources to answer a given
gueries. However, relying only on user queries to construgtiery. Even though a user initially submits his query to alsin
summaries makes cache warm-up a slow process, especialy sbeacon, that beacon may have to forward the query to several
the decentralization in the system means that each bea&sn sgher beacons in order to retrieve results. The simplestoagp
a limited number of queries. Moreover, purely reactive aagh would be for the beacon to send the query to all of its neighbor
may provide incomplete coverage of a source’s data, sinee teacons, but this flooding approach is too expensive in a larg



scale system. In this section we examine how a beacon darthe system, and must perform processing on every usey.quer
intelligently route queries to other beacons. This degree of centralization is contrary to the decerzedli
One approach is to use existing peer-to-peer routing tgaesi philosophy of peer-to-peer systems, since the superbeeaonn
For example, a beacon could forward each query to a randongjyickly become a bottleneck hindering the performance ef th
selected neighbor. Such “random walks” [26], [1] have beesystem. The superbeacon can also become a single point of
shown to be an effective and scalable way of routing queriéailure; if the superbeacon fails, the InfoBeacons netwaik
in a peer-to-peer network where there are many possibldtsesibe effectively unavailable until a new superbeacon is setec
for a given query. However, no content information is useBven when the new superbeacon is chosen, its cache will ble col
during the routing process, and such information could Edusand there will be a period of inefficient searching as its each
in routing to reduce the number of contacted peers whilé stivarms up.
returning high quality results. Other existing technigéesus on A more scalable and robust approach is to maintain the mutin
locating documents based on their identifier [31] or on keylso information in a decentralized manner, which is the goalhaf t
in document metadata (such as the title) [22]. Our goal isutlwb flat architecture, as shown in Figure 3(a). As this figure shows,
a system that can effectively search the full text of docusien a beacon’s neighbors consist of both information sources an
Our approach is that beacons use the ProbResults rankingtioer beacons, forming a one-level “flat” network. Each beac
route queries to sources and other beacons. In particutesfwdy caches results both from information sources and from other
three mechanisms for routing queries between beacons: beacons. For each query, ProbResults is used to producela sin

e Hierarchical A “superbeacon” caches results from beacon&anking of neighbors, and these neighbors are contactediar o

and uses this cache along with ProbResults to choose beac®h§ecreasing ProbResults score until enough results heea b
for a given query. found. For example, a beacon might first route the query to an

e Flat: Each beacon’s neighbor beacons are treated as regl'{?]é?rmatlon source with a score of 0.9, then to a neighbocbea

sources, and ProbResults produces a single ranking of bgtﬁt has a score of 0.8, then to another information sourtle wi

information sources and neighbor beacons score of 0.7, and so on.
' The flat approach avoids the centralization of the hieraaghi

° Hybrld:_Beacons are organized into a hybrid, two-level ”eﬁpproach, since there is no beacon that has to process every
work with superbeacons and leaf beacons. The superbeacgilsry or know about every other beacon. A disadvantage of the
cache results from leaf beacons, which themselves cagilg approach is that each beacon has less information than th
results from data sources. The beacons in the S”perbeaEBBerbeacon, and thus prediction accuracy may suffer.

level are organized as a flat network. In experiments with our beacon prototype, we found that the
structure of the flat network had a large impact on perforraanc
A. Hierarchical network Initially, we constructed a random topology, connectinghea

An example of thehierarchical approach is shown in Figure 2_beacon with a fa“dOm'Y chosen set of beacon _nel_ghbors. An
As the figure shows, the superbeacon is connected to the fresEXAMPIe Of this topology is the flat network shown in Figura)3(
the system’s beacons, who are in turn connected to the syste[l 1S topology, a given beacon has a path to all of the other
sources. Each query is submitted to the superbeacon, whigh (L82cONs (and sources) along each of its beacon neighbar link
ProbResults to rank the beacons for that query. The supmbeaTh's means that_ the same documents can appear as results from
routes the query to beacons in decreasing order of ProbRes@ll"y Of these neighbor links, and, after a while, the ProbResu
score, until it has received enough results to satisfy tre'ais '2NKINg begins to assign the same score to all of the beacon
threshold. As with regular beacons, the superbeacon cabiesN€19hbors. This prevents the beacon from making effectuéing
results it receives for use in routing future queries. decisions and performance suffers. _

One alternative approach we examined was to have each beacdh We instead use a spanning tree structure, the inter-reaco
send a copy of its cache to the superbeacon, and have mgt_lng performs better. An example_ls shown in Figure S(b)._
superbeacon evaluate the query against each cache to meterfiiStinct set of beacons and sources is reachable along aen gi
which beacon is best. This approach may result in more agcur@®acon neighbor link. The result is that the beacon’s Prebfe
routing, since the superbeacon would have more informati§fores effectively distinguish between the informatioilable
about each beacon. However, while each beacon’s cache il sn@2nd €ach of the neighbor links, improving routing accyrac
in a large scale system there are likely to be many beacoﬁ%e,suns in St_ection IV demonstrate the performance imprevem
and a large amount of space would be required to store a cdffyth® spanning tree structure.
of every beacon’s cache. Our goal is to keep beacons, everpeacons form themselves into a spanning tree in a decezetrali
the superbeacon, as light-weight as possible, and theréffgs manner. Since we are not trying to form a “minimum” spanning
infeasible to expect the superbeacon to store copies of dtieo tree, this process is relatively straightforward. Whenwa bheacon
beacon caches. As a result, we chose the approach descriBel®ins the network, it connects to one other existing beacon,
above, where the superbeacon keeps its own compact cachént designates the existing beacon as its “parent beacors” T

results from the beacons and uses ProbResults to perform @gignation of a “parent” is only used to ensure a spannieg tr
routing. topology, and does not denote any difference in functityali

between the beacons; in particular, the connection is metid
(unlike in the hierarchical architecture) and queries floathb
ways across the connection. The bead®m€may receive other
Unfortunately, the hierarchical approach still may not bals connections as other beacons join the network, but will géwva
able enough. The superbeacon must know about all of the beacbave only one parent beacon. Every beacon in the network has

B. Flat network
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Fig. 2. Hierarchical architecture.

Fig. 3. Flat architectures: (a) random, and (b) spanning. tre

one parent, except the first beacon to be created, which hasefficiency of the hierarchical network. Like a flat architee,
parent (and which can be thought of as the “root” of the treghere is no single superbeacon that must handle all of theegue
The result is that the network always maintains a tree siract in the system. Of course, each superbeacon in a hybrid networ
If a beacon becomes disconnected from its parent, it rejoinsll be more loaded than an average beacon in a flat network.
the network, choosing another parent. We do not expect a higlowever, if superbeacons become overloaded we can promote
level of “churn” among the beacons themselves (e.g., beacanore leaf beacons to superbeacon status to help share the loa
frequently joining and leaving), since a beacon is creatéti w Thus, unlike the hierarchical network, we can dynamicatljust
the intent of serving as a long-running information servitieus, the amount of work done by superbeacons based on the current
while there may be temporary disconnections, most of the tinbad in the system, enhancing scalability. Similarly, likee
the spanning tree should remain connected despite theesigas flat architecture, the hybrid architecture has no singlentpof
of the connectivity graph. failure. The failure of any one superbeacon does not make the
One disadvantage of the flat topology is that if there are vewhole searching system unavailable, although severaloosac
many beacons, there could be long delays as queries travgl lovill be unavailable until they can choose or connect to a new
overlay paths (even if the routing is effective.) For veryga superbeacon. Like a hierarchical architecture, supedsan
networks, then, the hierarchical or hybrid network (ddsmdi the hybrid network enable more efficient searching than te fl
next), which limit the number of beacons contacted, wouldetwork, since superbeacons see more queries and have more
provide lower delays. information about the system than an average beacon in the fla
architecture. Of course, since there are multiple supedyeain
. the hybrid network, each will have less information thansimgle
C. Hybrid network superbeacon in the hierarchical network.
The hybrid architecture bridges the extremes of the hibieat
and flat architectures. Figure 4 shows an example hybridarktw
In this architecture, beacons are organized into two leweith
each beacon at theuperbeacorievel responsible for a distinct In fact, both the flat and hierarchical architectures candens
set of beacons at tHeaf level. User queries are processed by thas special cases of the hybrid architecture. A hybrid né¢waoth
superbeacons and data sources are managed by the leaf$eacne superbeacon is a hierarchical network, while a hybriciork
While routing between superbeacons and leaf beacons ®lloey where every beacon is a superbeacon (and the superbeacons
hierarchical approach, routing between superbeacornsaslthe connect directly to sources) is a flat network. Therefore, by
flat architecture. changing the number of superbeacons in the hybrid network,
The hybrid architecture embodies a tradeoff between the e can make the system more or less like a hierarchical or flat
bustness and scalability of the flat architecture, and theckeng network, depending on the current needs of the system.



Fig. 4. Hybrid beacon network architecture.

%’tgrlcgzta — 2(2)’%),(3) distribution (with an exponent of 1) by duplicating randgml
Total documents 816,863 chosen queries; a Zipfian distribution is the observedibigion
Documents per sourc¢ 100...13,625 of several real query sets [35], [9], [22]. We also ran experits
with a non-skewed workload (the same workload, without the
TABLE | Zipf-like expansion). These results are not reported imitletut
CHARACTERISTICS OF INFORMATION SOURCES show that the relative ordering of which techniques are Hest
not change, although all techniques perform better for avelle
workload.

For our experiments, we assume that users choose a random
beacon. Real users may instead choose a beacon run by their

We have conducted a set of experiments to test the perfoenaggganization or themselves. Our current prototype expertaily
of our techniques. In these experiments, we used the beag@ support a peak rate of 144 user queries per second, guomin
network to route keyword queries to information sources] any 2 8 GHz Xeon workstation. We assume that each user specifies
counted the total number of information sources contacted fa threshold7: the number of desired document results. This
each query. Our goal is to minimize the number of unnecessagysimilar to a search engine, where users usually only Idok a
sources contacted, so that we can reduce the load on sourges.first page or two of results. Users can request more sesult
improve response time and enhance overall scalabilityeHge it the first results returned are not sufficient. Here, we used

focus on (1) the effectiveness of our informed probing tegi® 7 _ 10, although other experiments (omitted here) show that our
and, (2) the different architectures for routing. Exteasevalu- resylts and techniques generalize to other value®.ohs may

ation of the effectiveness of our ProbResults ranking fionct o expected, larger values @f cause more sources and beacons
including the quality of returned documents, is presentefi8]. o pe contacted looking for results, in linear proportionthe

increase inf'.
A. Experimental setup Our beacon prototype is implemented in C++, and uses XML
In our experiments, we used a beacon network to roufa€ssages carried over HTTP to communicate between beacons.

queries among 2,500 Internet information sources. To ensur AISO, @ beacon accepts user queries and returns resultsMia X

experiments were repeatable, we created our own informati8/€" HTTP, and queries information sources using HTTP. The
sources on a cluster in our lab, and populated them with HTMUSter machines which ran the beacons had dual 550 MHz
documents downloaded from 2,500 .com, .net, .gov, .eduamd .Pentium lil Xeon CPUs and 4 GB RAM, running Linux. We
websites. Sites were selected randomly from the top websité€re able to run 17 beacons per machine without difficulty. We
returned by the Google search engine for searches on “corfi@nfigured beacons with an experience factof’ = 10 and
“ net” etc. The proportion of websites of each suffix usedaned  CONstantpy,i, = 0.0001 (see Section II-A); we experimented
the global proportion reported by Google. Each informatioffith @ range of values _and found tha_t these provided the best
source managed documents downloaded from one website, RRormance for many different scenarios.
processed keyword searches using the vector space model wit
TE/IDF weighting. The characteristics of our data set amwsh B. Standalone performance of the informed probing tecteiqu
in Table I. Some sources had many documents and some had fevisirst, we examined the standalone performance of the irddrm
just as in the actual Internet. We also ran other experim@gils probing technique. Each probe query consisted of 6-8 keysvor
reported here) where we varied the total number of sourcesextracted from the source’s crawlable surface-web interf@s
the network from 1,000 to 2,500. The results are consistéit wdescribed in Section 11-B).
those reported here. In fact, some queries are now easiatisfys  Over all 2,500 sources, we were able to extract an average of 4
because there are more possible sources of information. percent of each source’s documents using a single informazep

Our query set consisted of real WWW queries from the publiclyable 1l show sample results for ten randomly chosen sources
available search.com query database. Because our dateesouwith different content sizes and types. These results shaw t
are a small subset of the whole internet, not all queries Imatc informed probing is quite effective at warming the beacochea
data, and we filtered out queries that did not match any mesultith source content. Note that some sources responded to the
at any source. We then expanded the query-set into a Zipf-linformed probe with more results than others. The effentes

IV. EXPERIMENTAL RESULTS



Data Source Total Size Percentage . :
in documents| of docs returned 90 with the random topology (32 percent more than the spgnnin
AffiliateMatch.com 252 81.34% tree topology). With the random network, the warming of the
showcase.netins.net 13625 16.91% beacon caches produces improvements in routing to infiamat
sourceforge.net 3277 20-012@ sources, but this improvement is reduced by the ineffectiuéing
mineral.galleries.com 1400 25.35% to other beacons. In contrast, with the spanning tree tgyplo
forbes.com 2108 14.32% . .
aausports.org 148 =7 00% beacons route queries to other beacons more effectivety, an
dmoz.org 10339 19.42% thus overall the routing improves as the beacon caches warm
abceda.com 107 94.39% up. Changing the maximum degree of the spanning tree (e.g.,
aahn.org 101 86.13% doubling it) had minimal impact on these results.
dallasobserver.com 3142 22.21% . . . .
The spanning tree topology is used with the flat architecture
TABLE Il for the rest of the results reported in this paper. It may be
RESULTS RETURNED BY A SINGLE INFORMED PROBE QUERY possible to develop other alternative topologies thatigeohigher

performance. However, in practice we have found the spannin
tree topology to be quite effective.

of the informed probe depends on the information availabléhe p. Alternative routing architectures
HTML page from which the probe was extracted. If an informed We conducted an experiment to evaluate our various arehitec

probe does not extr_act much information from a given SOUCEres for routing queries between beacons. We set up a rnetwor
then the beacon will take longer to warm its cache for th%lloo beacons to route queries to 2,500 information souktles

source. For comparison, we a_Iso measured the_ number_ot_sresg bmitted 50,000 queries to randomly chosen beacons. 8iixce
returned by 300 random dictionary word queries consistifig periment is aimed at studying the effect of organizingcbea

6-8 Zkeywords e_ach; this probe size is recommended by [1 to different architectures and comparing their perfanogwith
[19]°.Our expenmgn_ts showed that, on an average, only 3 Oé’trandom walk based approach, we did not perform informed
of 300 random dictionary word queries returned results.sTh(gi

. t d trated that hf i q b robing. The effect of informed probing on system perforogan
expenment demonstrate at much fewer nformed probes @l o gied in the next section. We compared ierarchical flat,

ns(;:szsary to extract content from source compared to ra”dgﬁh hybrid architectures to a more traditional peer-to-peer archi-
probing. . . . tecture that used random walks to route queries among bgacon
Note that although informed probing retrieves a large numbﬁ1 the hybrid architecture, our setup consisted of 10 s bNS

of documents, it d°‘?~°’. not_ e_x tract a full summary of the Sdﬂ;'rceand 90 leaf beacons with 9 leaf beacons connected to each
content. Therefore, it is still important to continuallygament the

cache with results of user queries and experience weighting superbeacon. For the random walk, beacons were organitzed in
. . ) ) network with a random topology (with an average of 5 neighjor
described in Section Il. We report experimental resultscimm- pology ( Y gsh

bining the inf d bing techni d ProbResultsimaut and random walking was used to route queries between beacons
ir:msne%:tio(r: Il\n/_(I)Erme probing technique and FrobRESUlSIMUt g vagyits are shown in Figure 6. As the figure shows, the

hierarchical, flat and hybrid architectures improve rogitmver
o ) random walking by more than a factor of two. The beacons are
C. Beacon network topologies in the flat architecture able to use their cached information and the ProbResultsngn
Next, we examined the impact of the beacon network topologg make better routing decisions than the random walk.
in the flat architecture. Recall that in this architectuagifebeacon  The best performance is achieved using the hierarchichi-arc
treats its neighbor beacons as regular sources, and p®ducéecture. The superbeacon sees every query, and collectga la
single ProbResults ranking of beacons and sources in ooderatmount of information about where to route queries. Loadss d
route queries. We used a network of 100 beacons to routeeguetributed fairly evenly over the leaf beacons, although beaavith
to 2,500 information sources. In general, we expect beatmnspopular content receive more queries. The beacon netwank us
be assigned to 100 or so sources, but we felt that a networktbé flat architecture contacts nearly 1.6 times as many esurc
only 25 beacons was too small for our experiments. A total @bmpared to the hierarchical approach (after the cachegsars).
50,000 queries were submitted to randomly chosen beacons. Unlike the superbeacon, each beacon in the flat architeonlye
We compared a random network of beacons to a spanning teses a fraction of the queries. As a result, beacons in the flat
network of beacons. In the random network, each beacon hahitecture cache fewer results than the superbeaconharel
an average of five beacon neighbors. In the spanning tref, ebless information for making routing decisions. Moreoverere
beacon had up to four beacon neighbors. In both cases, e liwhen there is excellent routing information, queries mustdl
between beacons were bi-directional. several hops in the flat network to reach the right beacons Thi
The results are shown in Figure 5. As the figure shows, undeffect is illustrated by Figure 7, which shows the number of
both topologies, the performance of the network improvethas beacons contacted, per 1,000 queries, averaged over 0G0,
beacon caches warm up. However, the spanning tree topolameries, with each technique. Each extra beacon visiteshpatly
achieves more overall efficiency than the random topolodterA tries a few of its own sources before forwarding the queryhto t
50,000 queries the spanning tree beacon network only needsiéxt beacon, increasing the total number of sources centathe
contact 68 sources per query in order to find results, cordpare result of these effects is that queries in the flat architectoust
visit more beacons and sources. Also, the load distribigimong

“Query probing sometimes uses a specialized dictionarg ample from a - hoacons is more skewed than in the hierarchical case; beacon
particular corpus. However, since we are dealing with wiebsrom multiple ’

domains, a domain dictionary is not appropriate and we uggzheral English 1N th? middle of the spanning tree mu_st process Qnd r_O_Ute more
dictionary, the Unix ispell dictionary. gueries than those at the leaves. Despite this extra ireeftigj the
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Fig. 6. Routing queries between beacons.

flat architecture may still be preferred since it avoids theeptial topology. As noted above, giving each beacon cache moretdire
bottlenecks of the centralized superbeacon approach. information about sources allows beacons to make betteéingpu

In comparison, the hybrid network contacts, on an average, gecisions.
percent fewer sources than the flat architecture. Beacotisein Other optimizations to our routing techniques may be péssib
hybrid architecture contact only 1.1 times as many sourges owever, our results demonstrate the usefulness of ProbRe-
those in the hierarchical architecture (after the cachesvarm). Sults for routing queries between beacons. Moreover, thelte
The hybrid architecture also strikes a balance in the nurober démonstrate an interesting tradeoff between decentrializand
beacons contacted (as shown in Figure 7). The hybrid acthieg  Source selection efficiency. If we can devote enough server
while preserving the decentralized structure of the systism resources to construct a superbeacon, the hierarchicedagipis
able to benefit from its closer resemblance to the hieraathidnost effective. If not, we must choose the hybrid or possitvign
architecture, and can concentrate more routing informatiche ~the flat architecture, expending more system resourceslover
second level without having a central bottleneck. avoid overburdening individual beacons.

We also experimented with increasing the number of sources ) o )
per beacon. The result is that doubling the number of sourdes Warming beacon caches with informed probing
per beacon (from 10 to 20 in our experiments) results in aNext, we examined the impact of using informed probing on
small bump in efficiency: 17 percent fewer sources contactélte overall system performance. We compared the averagberum
in the superbeacon topology and 19 percent fewer in the flaft sources contacted in an InfoBeacons system with and wtitho
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informed probing. The beacons in this experiment were ggdn document is scored using the vector space model’'s cositendes
in a hierarchical network. The probe queries were generasedwith TF/IDF weighting. This approach assigns a numeric acor
described in Section IV-B and each source was queried witht@each document for each query. We took the average relevanc
single probe. Over all sources, the informed probes retuare score for the documents returned for the flat and hierarthica
average of 45 percent of a source’s documents. Figure 8 shapproaches, as well as the random walk approach. In each case
that a system using informed probing contacted 10 percerdrfe the quality of results was roughly the same; although thdoan
sources on average than a system with no probing. The maict efivalk approach produced slightly better results, the relesavas
is that informed probing accelerates the warming of the eaclonly about 1 percent higher than the other approaches. Theis,
further improving the effective routing provided by ProlsRks. efficiency of the flat and hierarchical approaches does nateca

a drop in document quality.

F. Result quality

Finally, we examined the quality of results returned by the | V. RELATED WORK

foBeacons system. Because the data set is so large (ov€0800, Several systems have been developed to perform information
documents), it is impossible to assign a relevance scoreahy h retrieval using a peer-to-peer architecture [30], [293][Beacons

to each document for each query. Instead, we use a standactlally handle the “source selection” problem, while vidiial
approach from information retrieval to compute relevareach sources handle the “information retrieval” problem.



11

Networked information retrieval systems such as GIOSS [11§ structured in a wide variety of ways. Compared to these
and CORI [15] perform source selection, and beacons ardasimisystems, our approach trades strong query semantics faneath
to these existing systems but adapted in several ways to wadalability. Search engines [27] can search over HTML pages
into a peer-to-peer architecture. As discussed in Sectiothé many sites but do not deal well with uncrawlable or “hidden”
key differences between our system and existing networked dlata in web databases. Our approach uses sources’ own query
systems are: 1. the beacon is loosely-coupled to sourcdbg?2. processors to search “hidden” data. Some search systemsess
InfoBeacons network is a decentralized collection of rpldti a consistent classification scheme or topic hierarchy tochwhi
beacons, rather than a central directory server; and 3.ohsacsources can be assigned to aid in routing (such as in [19]) [32
continually adapt their cache and source scores based on ltheit is not clear that sources can always be assigned aesing|
results of queries sent to sources. Ipeirotis et al [20] useuaambiguous topic or that a single hierarchy is equally uisef
predictive model to determine when to update a source suynmatl users.
(e.g., beacon cache). Their technique could be considemed aVarious approaches to routing in peer-to-peer systems have
alternative to our approach of contacting the source onyevdseen proposed [36], [21], [26], [1], [31], [22]. Our systerses
query and continually updating the beacon cache. the full text of content to aid in routing, while these exigfi

Several peer-to-peer systems have been developed torperfaystems focus on document metadata, query statisticsorietw
source selection [5], [16]. These systems also expect asurtopology, or peer-processing capacity. It may be possible t
to export content summaries to aid in routing. The Harvesbmbine our approach with existing approaches to achiega ev
system is an early example, with “brokers” that are similanore scalability and accuracy in routing.
to our beacons [8]. Harvest combines source data export withCaching of data to improve performance has been well studied
search engine-style crawling of static content by modudied in many contexts, including the web [4], database syster} [1
“gatherers.” Unlike Harvest, our system requires neittmiree information retrieval [25] and peer-to-peer search [7]uélly,
export, nor that the data be crawlable (as much hidden-wé&b deata from a known source is cached to hide latency, not neces-

is not). sarily for source selection.
Callan, Lu and Renda have examined a peer-to-peer frame-
work similar to InfoBeacons for searching multiple infortioa VI. CONCLUSIONS

sources [23], [28], [24], an approach they refer to as “fatlef  We have examined how techniques adapted from information
search.” Although InfoBeacons addresses some of the sapagieval can be used to route queries in a peer-to-peeersyst
problems and uses some of the same approaches as their Wil goal is to route queries to the best information souragsd,
there are several differences. First, InfoBeacons andrdést® allow those sources to perform the actual query proces#ing.
search are useful for different types of application sdesar network of beacons work together to perform the routing, by
Federated search deals mainly with a relatively static odtwf caching results from data sources and using this cache te rou
digital libraries. In contrast, InfoBeacons is designedi¢al with  future queries. Our informed probing technique uses a small
data sources that appear or disappear frequently, andefiéyu number of query probes to warm the cache more quickly than
update their content. Second, while [23], [28], [24] discume just caching previous query results. Next, we presentedethr
type of architecture (roughly analogous to our flat archite®), approaches to inter-beacon routing. The hierarchical cambr
we have also examined the hierarchical and hybrid architest yses a single superbeacon to choose among beacons, who then
and compared and contrasted them with a flat architeétlitds choose among sources. In the flat approach, beacons treat oth
previous work also deals with techniques for merging resaitd beacons in the network like data sources and assign ProltResu
such techniques could be used to augment the client-sidgimger rankings to neighbor beacons and data sources. Finallyxara-e
performed by InfoBeacons. Balke et al [3] describe a pegeter ined the hybrid approach that retains the decentralizacd:tstre
federated search system similar to InfoBeacons, in thaitides of the flat architecture while still gaining from the advayea
on retrieving a subset of the results, and uses a spannieg ¢ a hierarchical architecture. Experimental results destrate
topology. Our work goes beyond the techniques of [3] in s#verthe performance/centralization tradeoff between theanihical,
ways, including: comparing hybrid and super-beacon tagiel hybrid and flat architectures. These results also show that o
to the spanning tree topology; fuzzy matching between @seritechniques are more effective than random walks for routing
and cached results, instead of the exact query lookup o@f8]; queries. These results show the effectiveness of usingnirafison

dynamic adaptation of the beacon cache to progressiveisna@et retrieval techniques for routing queries to informatiomrses.
the search performance.
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